skip to main content


Search for: All records

Creators/Authors contains: "T. Misiakiewicz"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. It is currently known how to characterize functions that neural networks can learn with SGD for two extremal parametrizations: neural networks in the linear regime, and neural networks with no structural constraints. However, for the main parametrization of interest —non-linear but regular networks— no tight characterization has yet been achieved, despite significant developments. We take a step in this direction by considering depth-2 neural networks trained by SGD in the mean-field regime. We consider functions on binary inputs that depend on a latent low-dimensional subspace (i.e., small number of coordinates). This regime is of interest since it is poorly under- stood how neural networks routinely tackle high-dimensional datasets and adapt to latent low- dimensional structure without suffering from the curse of dimensionality. Accordingly, we study SGD-learnability with O(d) sample complexity in a large ambient dimension d. Our main results characterize a hierarchical property —the merged-staircase property— that is both necessary and nearly sufficient for learning in this setting. We further show that non-linear training is necessary: for this class of functions, linear methods on any feature map (e.g., the NTK) are not capable of learning efficiently. The key tools are a new “dimension-free” dynamics approximation result that applies to functions defined on a latent space of low-dimension, a proof of global convergence based on polynomial identity testing, and an improvement of lower bounds against linear methods for non-almost orthogonal functions. 
    more » « less